An Approach To Mode and Anomaly Detection with Spacecraft Telemetry Data

نویسندگان

  • Gautam Biswas
  • Hamed Khorasgani
  • Gerald Stanje
  • Abhishek Dubey
  • Somnath Deb
  • Sudipto Ghoshal
چکیده

This paper discusses a mixed method that combines unsupervised learning methods and human expert input for analyzing telemetry data from long-duration robotic space missions. Our goal is to develop more automated methods for detecting anomalies in time series data. Once anomalies are identified using unsupervised learning methods we use feature selection methods followed by expert input to derive the knowledge required for building on-line detectors. These detectors can be used in later phases of the current mission and in future missions for improving operations and overall safety of the mission. Whereas the primary focus in this paper is on developing data-driven anomaly detection methods, we also present a computational platform for data mining and analytics that can operate on historical data offline, as well as incoming telemetry data on-line.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Anomaly Detection Method for Spacecraft Using Relevance Vector Learning

This paper proposes a novel anomaly detection system for spacecrafts based on data mining techniques. It constructs a nonlinear probabilistic model w.r.t. behavior of a spacecraft by applying the relevance vector regression and autoregression to massive telemetry data, and then monitors the on-line telemetry data using the model and detects anomalies. A major advantage over conventional anomaly...

متن کامل

Adaptive Limit-checking for Spacecraft Using Relevance Vector Autoregressive Model

Development of advanced anomaly detection and failure diagnosis technologies for spacecraft is a quite significant issue in the space industry, because the space environment is harsh, distant and uncertain. While several modern approaches based on qualitative reasoning, expert systems, and probabilistic reasoning have been developed recently for this purpose, any of them has a common difficulty...

متن کامل

Telemetry Monitoring by Dimensionality Reduction and Learning Hidden Markov Model

This paper proposes a data-driven health monitoring / anomaly detection method for spacecraft systems. Especially, we focus on some common properties spacecraft telemetry data has, such as highdimensionality, multi-modality and periodicity. The proposed method first monitors the static relationships among a number of variables contained in the telemetry by hybrid of clustering and dimensionalit...

متن کامل

Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding

As spacecraft send back increasing amounts of telemetry data, improved anomaly detection systems are needed to lessen the monitoring burden placed on operations engineers and reduce operational risk. Current spacecraft monitoring systems only target a subset of anomaly types and often require costly expert knowledge to develop and maintain due to challenges involving scale and complexity. We de...

متن کامل

Diagnosis Method for Spacecraft Using Dynamic Bayesian Networks

Development of sophisticated anomaly detection and diagnosis methods for spacecraft is one of the important problems in space system operation. In this study, we propose a diagnosis method for spacecraft using probabilistic reasoning and statistical learning with Dynamic Bayesian Networks (DBNs). In this method, the DBNs are initially from priorknowledge, then modified or partly re-constructed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016